direct product, metabelian, supersoluble, monomial
Aliases: C2×C32⋊2Q8, C6⋊1Dic6, Dic3.7D6, C62.12C22, (C3×C6)⋊2Q8, C32⋊4(C2×Q8), C22.12S32, C3⋊2(C2×Dic6), (C2×C6).17D6, (C3×C6).16C23, C6.16(C22×S3), (C2×Dic3).3S3, (C6×Dic3).4C2, C3⋊Dic3.15C22, (C3×Dic3).7C22, C2.16(C2×S32), (C2×C3⋊Dic3).8C2, SmallGroup(144,152)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C32⋊2Q8
G = < a,b,c,d,e | a2=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 224 in 84 conjugacy classes, 40 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C2×C4, Q8, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C3×Dic3, C3⋊Dic3, C62, C2×Dic6, C32⋊2Q8, C6×Dic3, C2×C3⋊Dic3, C2×C32⋊2Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, C32⋊2Q8, C2×S32, C2×C32⋊2Q8
Character table of C2×C32⋊2Q8
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | -1 | 2 | -1 | 0 | 2 | 0 | -2 | 0 | 0 | 1 | -2 | -1 | 1 | -2 | 2 | 1 | -1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 2 | 0 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -1 | -1 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 1 | 2 | -2 | 1 | -1 | 1 | -1 | 1 | 0 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -1 | -1 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 1 | 2 | -2 | 1 | -1 | 1 | -1 | 1 | 0 | 1 | 1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | 2 | -2 | -1 | 2 | -1 | 0 | -2 | 0 | 2 | 0 | 0 | 1 | -2 | -1 | 1 | -2 | 2 | 1 | -1 | 1 | -1 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | -2 | 0 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 2 | -1 | 1 | 1 | 1 | -1 | 0 | √3 | -√3 | 0 | √3 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | 0 | -√3 | √3 | 0 | √3 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 1 | 1 | -2 | -2 | -1 | 1 | 1 | -√3 | 0 | 0 | √3 | 0 | 0 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | √3 | 0 | 0 | -√3 | 0 | 0 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | 0 | √3 | -√3 | 0 | -√3 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ24 | 2 | 2 | -2 | -2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | -√3 | 0 | 0 | √3 | 0 | 0 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ25 | 2 | -2 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 1 | 1 | -2 | -2 | -1 | 1 | 1 | √3 | 0 | 0 | -√3 | 0 | 0 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 2 | -1 | 1 | 1 | 1 | -1 | 0 | -√3 | √3 | 0 | -√3 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ27 | 4 | 4 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ28 | 4 | -4 | 4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ29 | 4 | 4 | -4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
ρ30 | 4 | -4 | -4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
(1 5)(2 6)(3 7)(4 8)(9 34)(10 35)(11 36)(12 33)(13 38)(14 39)(15 40)(16 37)(17 29)(18 30)(19 31)(20 32)(21 27)(22 28)(23 25)(24 26)(41 48)(42 45)(43 46)(44 47)
(1 39 35)(2 36 40)(3 37 33)(4 34 38)(5 14 10)(6 11 15)(7 16 12)(8 9 13)(17 22 41)(18 42 23)(19 24 43)(20 44 21)(25 30 45)(26 46 31)(27 32 47)(28 48 29)
(1 35 39)(2 36 40)(3 33 37)(4 34 38)(5 10 14)(6 11 15)(7 12 16)(8 9 13)(17 41 22)(18 42 23)(19 43 24)(20 44 21)(25 30 45)(26 31 46)(27 32 47)(28 29 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 47 3 45)(2 46 4 48)(5 44 7 42)(6 43 8 41)(9 17 11 19)(10 20 12 18)(13 22 15 24)(14 21 16 23)(25 39 27 37)(26 38 28 40)(29 36 31 34)(30 35 32 33)
G:=sub<Sym(48)| (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,29)(18,30)(19,31)(20,32)(21,27)(22,28)(23,25)(24,26)(41,48)(42,45)(43,46)(44,47), (1,39,35)(2,36,40)(3,37,33)(4,34,38)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,35,39)(2,36,40)(3,33,37)(4,34,38)(5,10,14)(6,11,15)(7,12,16)(8,9,13)(17,41,22)(18,42,23)(19,43,24)(20,44,21)(25,30,45)(26,31,46)(27,32,47)(28,29,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,3,45)(2,46,4,48)(5,44,7,42)(6,43,8,41)(9,17,11,19)(10,20,12,18)(13,22,15,24)(14,21,16,23)(25,39,27,37)(26,38,28,40)(29,36,31,34)(30,35,32,33)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,29)(18,30)(19,31)(20,32)(21,27)(22,28)(23,25)(24,26)(41,48)(42,45)(43,46)(44,47), (1,39,35)(2,36,40)(3,37,33)(4,34,38)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,35,39)(2,36,40)(3,33,37)(4,34,38)(5,10,14)(6,11,15)(7,12,16)(8,9,13)(17,41,22)(18,42,23)(19,43,24)(20,44,21)(25,30,45)(26,31,46)(27,32,47)(28,29,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,3,45)(2,46,4,48)(5,44,7,42)(6,43,8,41)(9,17,11,19)(10,20,12,18)(13,22,15,24)(14,21,16,23)(25,39,27,37)(26,38,28,40)(29,36,31,34)(30,35,32,33) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,34),(10,35),(11,36),(12,33),(13,38),(14,39),(15,40),(16,37),(17,29),(18,30),(19,31),(20,32),(21,27),(22,28),(23,25),(24,26),(41,48),(42,45),(43,46),(44,47)], [(1,39,35),(2,36,40),(3,37,33),(4,34,38),(5,14,10),(6,11,15),(7,16,12),(8,9,13),(17,22,41),(18,42,23),(19,24,43),(20,44,21),(25,30,45),(26,46,31),(27,32,47),(28,48,29)], [(1,35,39),(2,36,40),(3,33,37),(4,34,38),(5,10,14),(6,11,15),(7,12,16),(8,9,13),(17,41,22),(18,42,23),(19,43,24),(20,44,21),(25,30,45),(26,31,46),(27,32,47),(28,29,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,47,3,45),(2,46,4,48),(5,44,7,42),(6,43,8,41),(9,17,11,19),(10,20,12,18),(13,22,15,24),(14,21,16,23),(25,39,27,37),(26,38,28,40),(29,36,31,34),(30,35,32,33)]])
C2×C32⋊2Q8 is a maximal subgroup of
C62.4D4 Dic3⋊5Dic6 C62.8C23 C62.9C23 C62.10C23 D6⋊Dic6 Dic3.D12 C62.35C23 D6⋊2Dic6 C62.65C23 D6⋊4Dic6 C62.85C23 C12⋊3Dic6 C12⋊Dic6 C62.95C23 C62.101C23 C62⋊3Q8 C62⋊4Q8 C62.15D4 C2×S3×Dic6 Dic6.24D6
C2×C32⋊2Q8 is a maximal quotient of
C62.39C23 C62.42C23 C12⋊3Dic6 C12⋊Dic6 C62⋊3Q8 C62⋊4Q8
Matrix representation of C2×C32⋊2Q8 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
4 | 10 | 0 | 0 | 0 | 0 |
10 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[4,10,0,0,0,0,10,9,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C2×C32⋊2Q8 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_2Q_8
% in TeX
G:=Group("C2xC3^2:2Q8");
// GroupNames label
G:=SmallGroup(144,152);
// by ID
G=gap.SmallGroup(144,152);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,121,55,490,3461]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export